Dynamic state allocation for MEG source reconstruction
نویسندگان
چکیده
منابع مشابه
Dynamic state allocation for MEG source reconstruction
Our understanding of the dynamics of neuronal activity in the human brain remains limited, due in part to a lack of adequate methods for reconstructing neuronal activity from noninvasive electrophysiological data. Here, we present a novel adaptive time-varying approach to source reconstruction that can be applied to magnetoencephalography (MEG) and electroencephalography (EEG) data. The method ...
متن کاملCanonical Source Reconstruction for MEG
We describe a simple and efficient solution to the problem of reconstructing electromagnetic sources into a canonical or standard anatomical space. Its simplicity rests upon incorporating subject-specific anatomy into the forward model in a way that eschews the need for cortical surface extraction. The forward model starts with a canonical cortical mesh, defined in a standard stereotactic space...
متن کاملNUTMEG: Open Source Software for MEG/EEG Source Reconstruction
NUTMEG is an open-source MATLAB-based toolbox for MEG/EEG data. NUTMEG includes many options for source reconstruction, an easily navigable window for exploring source results, several options for source level connectivity computation, statistical evaluation of these source results, and conversion to and from formats of other toolboxes.
متن کاملAlgorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM☆
The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy-an approximation to the marginal like...
متن کاملSelecting forward models for MEG source-reconstruction using model-evidence
We investigated four key aspects of forward models for distributed solutions to the MEG inverse problem: 1) the nature of the cortical mesh constraining sources (derived from an individual's MRI, or inverse-normalised from a template mesh); 2) the use of single-sphere, overlapping spheres, or Boundary Element Model (BEM) head-models; 3) the density of the cortical mesh (3000 vs. 7000 vertices);...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: NeuroImage
سال: 2013
ISSN: 1053-8119
DOI: 10.1016/j.neuroimage.2013.03.036